LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Eddy memory as an explanation of intraseasonal periodic behaviour in baroclinic eddies

Photo by kellysikkema from unsplash

The baroclinic annular mode (BAM) is a leading-order mode of the eddy-kinetic energy in the Southern Hemisphere exhibiting. oscillatory behavior at intra-seasonal time scales. The oscillation mechanism has been linked… Click to show full abstract

The baroclinic annular mode (BAM) is a leading-order mode of the eddy-kinetic energy in the Southern Hemisphere exhibiting. oscillatory behavior at intra-seasonal time scales. The oscillation mechanism has been linked to transient eddy-mean flow interactions that remain poorly understood. Here we demonstrate that the finite memory effect in eddy-heat flux dependence on the large-scale flow can explain the origin of the BAM's oscillatory behavior. We represent the eddy memory effect by a delayed integral kernel that leads to a generalized Langevin equation for the planetary-scale heat equation. Using a mathematical framework for the interactions between planetary and synoptic-scale motions, we derive a reduced dynamical model of the BAM - a stochastically-forced oscillator with a period proportional to the geometric mean between the eddy-memory time scale and the diffusive eddy equilibration timescale. Our model provides a formal justification for the previously proposed phenomenological model of the BAM and could be used to explicitly diagnose the memory kernel and improve our understanding of transient eddy-mean flow interactions in the atmosphere.

Keywords: explanation intraseasonal; intraseasonal periodic; eddy memory; bam; memory explanation; memory

Journal Title: Quarterly Journal of the Royal Meteorological Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.