LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detailed chemical analysis of a fully formulated oil using dielectric barrier discharge ionisation–mass spectrometry

Photo from wikipedia

Rationale Fully formulated oils (FFOs) are integral to automotive lubrication; however, detailed compositional analysis is challenging due to high levels of chemical complexity. In particular, existing mass spectrometric approaches often… Click to show full abstract

Rationale Fully formulated oils (FFOs) are integral to automotive lubrication; however, detailed compositional analysis is challenging due to high levels of chemical complexity. In particular, existing mass spectrometric approaches often target particular FFO components, leading to poor analytical coverage of the overall formulation, with increased overheads and analytical timescales. Methods Herein we report the application of a commercially available SICRIT SC‐20 dielectric barrier discharge ionisation (DBDI) source and Thermo Fisher Scientific LTQ Orbitrap XL to the analysis of an FFO. Nitrogen was used as a discharge gas for the DBDI source, and was modified using a range of commonplace solvents to tailor the experimental conditions for the analysis of various components. Results The reported method allowed analysis of a range of FFO components of interest, encompassing a wide range of chemistries, in under 1 min. By modifying the discharge gas used for ionisation, experiments could be optimised for the analysis of particular FFO components across positive and negative ion modes. In particular, use of water vapour as a discharge gas modifier with positive ion mode mass spectrometry permitted concomitant analysis of antioxidants and base oil hydrocarbons. Furthermore, case studies of selected linear alkanes and alkenes profile the differences in the range of ions formed across these saturated and unsaturated aliphatic compounds, giving insight into the fate of base oil hydrocarbons in FFO analyses. Conclusions A rapid method for analysis of FFO compositions has been developed and provides coverage of a range of components of interest. The results indicate that the method presented may be of utility in analysis of other FFOs or similarly challenging complex mixtures.

Keywords: mass spectrometry; analysis; discharge; ionisation

Journal Title: Rapid Communications in Mass Spectrometry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.