LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel adaptive nonsingular terminal sliding mode controller design and its application to active front steering system

Photo by lppoitras from unsplash

Note that the amplitude of chattering existing in the sliding mode control method is proportional to the magnitude of the control gain. Therefore, the key issue to diminish the chattering… Click to show full abstract

Note that the amplitude of chattering existing in the sliding mode control method is proportional to the magnitude of the control gain. Therefore, the key issue to diminish the chattering is to decrease the value of sliding mode controller's gain to an acceptable minimal level defined by the so‐called reaching condition for the sliding mode's existence. For this reason, the nonsingular terminal sliding mode (NTSM) control method and the adaptive technique have been considered in this paper to develop a novel adaptive NTSM control method, which can be used to search the minimal value of the control gain automatically in the presence of the external disturbances. Meanwhile, the average value of a high‐frequency switching signal in the adaptive law can be provided by Arie Levant's differentiator rather than a low‐pass filter. The rigorous mathematical proof verifies that the system states can converge to the origin within a finite time under the proposed adaptive NTSM controller. Both the academic example and the practical application to an active front steering system are illustrated to show that the presented adaptive NTSM controller has better control performance than the conventional sliding mode controller.

Keywords: system; mode controller; control; sliding mode; nonsingular terminal

Journal Title: International Journal of Robust and Nonlinear Control
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.