This paper presents a novel decentralized filtering adaptive constrained tracking control framework for uncertain interconnected nonlinear systems. Each subsystem has its own decentralized controller based on the established decentralized state… Click to show full abstract
This paper presents a novel decentralized filtering adaptive constrained tracking control framework for uncertain interconnected nonlinear systems. Each subsystem has its own decentralized controller based on the established decentralized state predictor. For each subsystem, a piecewise constant adaptive law will generate total uncertainty estimates by solving the error dynamics between the host system and decentralized state predictor with the neglection of unknowns, whereas a decentralized filtering control law is designed to compensate both local and mismatched uncertainties from other subsystems, as well as achieve the local objective tracking of the host system. The achievement of global objective depends on the achievement of local objective for each subsystem. In the control scheme, the nonlinear uncertainties are compensated for within the bandwidth of low‐pass filters, while the trade‐off between tracking and constraints violation avoidance is formulated as a numerical constrained optimization problem which is solved periodically. Priority is given to constraints violation avoidance at the cost of deteriorated tracking performance. The uniform performance bounds are derived for the system states and control inputs as compared to the corresponding signals of a bounded closed‐loop reference system, which assumes partial cancelation of uncertainties within the bandwidth of the control signal. Compared with model predictive control (MPC) and unconstrained controller, the proposed control architecture is capable of solving the tracking control problems for interconnected nonlinear systems subject to constraints and uncertainties.
               
Click one of the above tabs to view related content.