LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finite‐time extended state observer‐based exact tracking control of an unmanned surface vehicle

Photo from wikipedia

In the presence of complex unknowns consisting of system dynamics and environmental disturbances, it is rather meaningful to exactly track an unmanned surface vehicle (USV) to the desired trajectory in… Click to show full abstract

In the presence of complex unknowns consisting of system dynamics and environmental disturbances, it is rather meaningful to exactly track an unmanned surface vehicle (USV) to the desired trajectory in practical scenarios including routing inspection, marine survey, and guard patrol, etc. In this paper, the exact trajectory tracking problem is solved by establishing a finite‐time extended state observer‐ (FESO) based exact tracking control (FESO‐ETC) scheme. By virtue of nonsmooth analysis, the FESO is firstly devised by only requiring continuous differentiability and is incorporated into the nonsingular fast terminal sliding mode control framework, and thereby further enhancing disturbance rejection and tracking accuracy. Moreover, global finite‐time stability of the entire FESO‐ETC closed‐loop system is derived from rigorously theoretical analysis, and thereby contributing to a model‐free finite‐time control paradigm. Simulation studies and comparisons demonstrate that the proposed FESO‐ETC approach can achieve exact trajectory tracking in the presence of complex unknowns.

Keywords: finite time; unmanned surface; time extended; surface vehicle; control

Journal Title: International Journal of Robust and Nonlinear Control
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.