LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Appearance‐based landmark selection for visual localization

Photo by lukejonesdesign from unsplash

Visual localization in outdoor environments is subject to varying appearance conditions rendering it difficult to match current camera images against a previously recorded map. Although it is possible to extend… Click to show full abstract

Visual localization in outdoor environments is subject to varying appearance conditions rendering it difficult to match current camera images against a previously recorded map. Although it is possible to extend the respective maps to allow precise localization across a wide range of differing appearance conditions, these maps quickly grow in size and become impractical to handle on a mobile robotic platform. To address this problem, we present a landmark selection algorithm that exploits appearance co‐observability for efficient visual localization in outdoor environments. Based on the appearance condition inferred from recently observed landmarks, a small fraction of landmarks useful under the current appearance condition is selected and used for localization. This allows to greatly reduce the bandwidth consumption between the mobile platform and a map backend in a shared‐map scenario, and significantly lowers the demands on the computational resources on said mobile platform. We derive a landmark ranking function that exhibits high performance under vastly changing appearance conditions and is agnostic to the distribution of landmarks across the different map sessions. Furthermore, we relate and compare our proposed appearance‐based landmark ranking function to popular ranking schemes from information retrieval, and validate our results on the challenging University of Michigan North Campus long‐term vision and LIDAR data sets (NCLT), including an evaluation of the localization accuracy using ground‐truth poses. In addition to that, we investigate the computational and bandwidth resource demands. Our results show that by selecting 20–30% of landmarks using our proposed approach, a similar localization performance as the baseline strategy using all landmarks is achieved.

Keywords: visual localization; localization; appearance based; appearance; landmark selection

Journal Title: Journal of Field Robotics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.