LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Invasive buffelgrass detection using high‐resolution satellite and UAV imagery on Google Earth Engine

Photo by sushioutlaw from unsplash

Methods to detect and monitor the spread of invasive grasses are critical to avoid ecosystem transformations and large economic costs. The rapid spread of non‐native buffelgrass(Pennisetum ciliare) has intensified fire… Click to show full abstract

Methods to detect and monitor the spread of invasive grasses are critical to avoid ecosystem transformations and large economic costs. The rapid spread of non‐native buffelgrass(Pennisetum ciliare) has intensified fire risk and is replacing fire intolerant native vegetation in the Sonoran Desert of the southwestern US. Coarse‐resolution satellite imagery has had limited success in detecting small patches of buffelgrass, whereas ground‐based and aerial survey methods are often cost prohibitive. To improve detection, we trained 2 m resolution DigitalGlobe WorldView‐2 satellite imagery with 12 cm resolution unmanned aerial vehicle (UAV) imagery and classified buffelgrass on Google Earth Engine, a cloud computing platform, using Random Forest (RF) models in Saguaro National Park, Arizona, USA. Our classification models had an average overall accuracy of 93% and producer's accuracies of 94–96% for buffelgrass, although user's accuracies were low. We detected a 2.92 km2 area of buffelgrass in the eastern Rincon Mountain District (1.07% of the total area) and a 0.46 km2 area (0.46% of the total area) in the western Tucson Mountain District of Saguaro National Park. Buffelgrass cover was significantly greater in the Sonoran Paloverde‐Mixed Cacti Desert Scrub vegetation type, on poorly developed Entisols and Inceptisol soils and on south‐facing topographic aspects compared to other areas. Our results demonstrate that high‐resolution imagery improve on previous attempts to detect and classify buffelgrass and indicate potential areas where the invasive grass might spread. The methods demonstrated in this study could be employed by land managers as a low‐cost strategy to identify priority areas for control efforts and continued monitoring.

Keywords: buffelgrass; resolution satellite; uav imagery; resolution

Journal Title: Remote Sensing in Ecology and Conservation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.