LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic predictions using flexible joint models of longitudinal and time‐to‐event data

Photo by freestocks from unsplash

Joint models for longitudinal and time‐to‐event data are particularly relevant to many clinical studies where longitudinal biomarkers could be highly associated with a time‐to‐event outcome. A cutting‐edge research direction in… Click to show full abstract

Joint models for longitudinal and time‐to‐event data are particularly relevant to many clinical studies where longitudinal biomarkers could be highly associated with a time‐to‐event outcome. A cutting‐edge research direction in this area is dynamic predictions of patient prognosis (e.g., survival probabilities) given all available biomarker information, recently boosted by the stratified/personalized medicine initiative. As these dynamic predictions are individualized, flexible models are desirable in order to appropriately characterize each individual longitudinal trajectory. In this paper, we propose a new joint model using individual‐level penalized splines (P‐splines) to flexibly characterize the coevolution of the longitudinal and time‐to‐event processes. An important feature of our approach is that dynamic predictions of the survival probabilities are straightforward as the posterior distribution of the random P‐spline coefficients given the observed data is a multivariate skew‐normal distribution. The proposed methods are illustrated with data from the HIV Epidemiology Research Study. Our simulation results demonstrate that our model has better dynamic prediction performance than other existing approaches. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: medicine; longitudinal time; dynamic predictions; time event

Journal Title: Statistics in Medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.