The performance of statistical methods is frequently evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, available data-generating models (DGMs) are restricted to either… Click to show full abstract
The performance of statistical methods is frequently evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, available data-generating models (DGMs) are restricted to either inclusion of two-armed trials or the fixed-effect model. Based on data-generation in the pairwise case, we propose a framework for the simulation of random-effect network meta-analyses including multiarm trials with binary outcome. The only one of the common DGMs used in the pairwise case, which is directly applicable to a random-effects network setting uses strongly restrictive assumptions. To overcome these limitations, we modify this approach and derive a related simulation procedure using odds ratios as effect measure. The performance of this procedure is evaluated with synthetic data and in an empirical example.
               
Click one of the above tabs to view related content.