Epidemiologic research often aims to estimate the association between a binary exposure and a binary outcome, while adjusting for a set of covariates (eg, confounders). When data are clustered, as… Click to show full abstract
Epidemiologic research often aims to estimate the association between a binary exposure and a binary outcome, while adjusting for a set of covariates (eg, confounders). When data are clustered, as in, for instance, matched case-control studies and co-twin-control studies, it is common to use conditional logistic regression. In this model, all cluster-constant covariates are absorbed into a cluster-specific intercept, whereas cluster-varying covariates are adjusted for by explicitly adding these as explanatory variables to the model. In this paper, we propose a doubly robust estimator of the exposure-outcome odds ratio in conditional logistic regression models. This estimator protects against bias in the odds ratio estimator due to misspecification of the part of the model that contains the cluster-varying covariates. The doubly robust estimator uses two conditional logistic regression models for the odds ratio, one prospective and one retrospective, and is consistent for the exposure-outcome odds ratio if at least one of these models is correctly specified, not necessarily both. We demonstrate the properties of the proposed method by simulations and by re-analyzing a publicly available dataset from a matched case-control study on induced abortion and infertility.
               
Click one of the above tabs to view related content.