LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kernel density-based likelihood ratio tests for linear regression models.

Photo by drew_hays from unsplash

In this article, we develop a so-called profile likelihood ratio test (PLRT) based on the estimated error density for the multiple linear regression model. Unlike the existing likelihood ratio test… Click to show full abstract

In this article, we develop a so-called profile likelihood ratio test (PLRT) based on the estimated error density for the multiple linear regression model. Unlike the existing likelihood ratio test (LRT), our proposed PLRT does not require any specification on the error distribution. The asymptotic properties are developed and the Wilks phenomenon is studied. Simulation studies are conducted to examine the performance of the PLRT. It is observed that our proposed PLRT generally outperforms the existing LRT, empirical likelihood ratio test and the weighted profile likelihood ratio test in sense that (i) its type I error rates are closer to the prespecified nominal level; (ii) it generally has higher powers; (iii) it performs satisfactorily when moments of the error do not exist (eg, Cauchy distribution); and (iv) it has higher probability of correctly selecting the correct model in the multiple testing problem. A mammalian eye gene expression dataset and a concrete compressive strength dataset are analyzed to illustrate our methodologies.

Keywords: ratio test; likelihood; likelihood ratio; linear regression

Journal Title: Statistics in medicine
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.