LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Avoiding bias in self-controlled case series studies of coronavirus disease 2019.

Photo from wikipedia

Many studies, including self-controlled case series (SCCS) studies, are being undertaken to quantify the risks of complications following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that… Click to show full abstract

Many studies, including self-controlled case series (SCCS) studies, are being undertaken to quantify the risks of complications following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19). One such SCCS study, based on all COVID-19 cases arising in Sweden over an 8-month period, has shown that SARS-CoV-2 infection increases the risks of AMI and ischemic stroke. Some features of SARS-CoV-2 infection and COVID-19, present in this study and likely in others, complicate the analysis and may introduce bias. In the present paper we describe these features, and explore the biases they may generate. Motivated by data-based simulations, we propose methods to reduce or remove these biases.

Keywords: controlled case; self controlled; disease 2019; case series; coronavirus disease

Journal Title: Statistics in medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.