Multivariate recurrent event data are frequently encountered in biomedical and epidemiological studies when subjects experience multiple types of recurrent events. In practice, the event type information may be missing due… Click to show full abstract
Multivariate recurrent event data are frequently encountered in biomedical and epidemiological studies when subjects experience multiple types of recurrent events. In practice, the event type information may be missing due to a variety of reasons. In this article, we consider a semiparametric additive rates model for multivariate recurrent event data with missing event types. We develop the augmented inverse probability weighting technique to handle event types that are missing at random. The nonparametric kernelāassisted proposals for the missing mechanisms are studied. The resulting estimator is shown to be consistent and asymptotically normal. Extensive simulation studies and a real data application are provided to illustrate the validity and practical utility of the proposed method.
               
Click one of the above tabs to view related content.