LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solid-State Carbon Dots with Red Fluorescence and Efficient Construction of Dual-Fluorescence Morphologies.

Photo from wikipedia

Stable solid-state red fluorescence from organosilane-functionalized carbon dots (CDs) with sizes around 3 nm is reported for the first time. Meanwhile, a novel method is also first reported for the… Click to show full abstract

Stable solid-state red fluorescence from organosilane-functionalized carbon dots (CDs) with sizes around 3 nm is reported for the first time. Meanwhile, a novel method is also first reported for the efficient construction of dual-fluorescence morphologies. The quantum yield of these solid-state CDs and their aqueous solution is 9.60 and 50.7%, respectively. The fluorescence lifetime is 4.82 ns for solid-state CDs, and 15.57 ns for their aqueous solution. These CDs are detailedly studied how they can exhibit obvious photoluminescence overcoming the self-quenching in solid state. Luminescent materials are constructed with dual fluorescence based on as-prepared single emissive CDs (red emission) and nonfluorescence media (starch, Al2 O3 , and RnOCH3 COONa), with the characteristic peaks located at nearly 440 and 600 nm. Tunable photoluminescence can be successfully achieved by tuning the mass ratio of CDs to solid matrix (such as starch). These constructed dual-fluorescence CDs/starch composites can also be applied in white light-emitting diodes with UV chips (395 nm), and oxygen sensing.

Keywords: solid state; red fluorescence; fluorescence; dual fluorescence; carbon dots

Journal Title: Small
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.