LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

Photo from wikipedia

CH3 NH3 PbI3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from… Click to show full abstract

CH3 NH3 PbI3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long-wavelength photons (500 nm < λ < 780 nm). Moreover, the light-driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells.

Keywords: absorption; perovskite photovoltaic; layer; charge; photovoltaic cells; light absorption

Journal Title: Small
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.