LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Transparent and Integrable Surface Texture Change Device for Localized Tactile Feedback.

Photo from wikipedia

Human-machine haptic interaction is typically detected by variations in friction, roughness, hardness, and temperature, which combines to create sensation of surface texture change. Most of the current technologies work to… Click to show full abstract

Human-machine haptic interaction is typically detected by variations in friction, roughness, hardness, and temperature, which combines to create sensation of surface texture change. Most of the current technologies work to simulate changes in tactile perception (via electrostatic, lateral force fields, vibration motors, etc.) without creating actual topographical transformations. This makes it challenging to provide localized feedback. Here, a new concept for on-demand surface texture augmentation that is capable of physically forming local topographic features in any predesigned pattern is demonstrated. The transparent, flexible, integrable device comprises of a hybrid electrode system with conductive hydrogel, silver nanowires, and conductive polymers with acrylic elastomer as the dielectric layer. Desired surface textures can be controlled by a predesigned pattern of electrodes, which operates as independent or interconnected actuators. Surface features with up to a height of 0.155 mm can be achieved with a transformation time of less than a second for a device area of 18 cm2 . High transparency levels of 76% are achieved due to the judicious choice of the electrode and the active elastomer layer. The capability of localized and controlled deformations makes this system highly useful for applications such as display touchscreens, touchpads, braille displays, on-demand buttons, and microfluidic devices.

Keywords: surface; surface texture; texture change; device

Journal Title: Small
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.