LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microscale Electro-Hydrodynamic Cell Printing with High Viability.

Photo by nci from unsplash

Cell printing has gained extensive attentions for the controlled fabrication of living cellular constructs in vitro. Various cell printing techniques are now being explored and developed for improved cell viability… Click to show full abstract

Cell printing has gained extensive attentions for the controlled fabrication of living cellular constructs in vitro. Various cell printing techniques are now being explored and developed for improved cell viability and printing resolution. Here an electro-hydrodynamic cell printing strategy is developed with microscale resolution (<100 µm) and high cellular viability (>95%). Unlike the existing electro-hydrodynamic cell jetting or printing explorations, insulating substrate is used to replace conventional semiconductive substrate as the collecting surface which significantly reduces the electrical current in the electro-hydrodynamic printing process from milliamperes (>0.5 mA) to microamperes (<10 µA). Additionally, the nozzle-to-collector distance is fixed as small as 100 µm for better control over filament deposition. These features ensure high cellular viability and normal postproliferative capability of the electro-hydrodynamically printed cells. The smallest width of the electro-hydrodynamically printed hydrogel filament is 82.4 ± 14.3 µm by optimizing process parameters. Multiple hydrogels or multilayer cell-laden constructs can be flexibly printed under cell-friendly conditions. The printed cells in multilayer hydrogels kept alive and gradually spread during 7-days culture in vitro. This exploration offers a novel and promising cell printing strategy which might benefit future biomedical innovations such as microscale tissue engineering, organ-on-a-chip systems, and nanomedicine.

Keywords: hydrodynamic cell; viability; electro hydrodynamic; cell printing; microscale electro; cell

Journal Title: Small
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.