LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrasmall Pb:Ag2 S Quantum Dots with Uniform Particle Size and Bright Tunable Fluorescence in the NIR-II Window.

Photo by timmarshall from unsplash

Ag2 S quantum dots (QDs) are well-known near-infrared fluorophores and have attracted great interest in biomedical labeling and imaging in the past years. However, their photoluminescence efficiency is hard to… Click to show full abstract

Ag2 S quantum dots (QDs) are well-known near-infrared fluorophores and have attracted great interest in biomedical labeling and imaging in the past years. However, their photoluminescence efficiency is hard to compete with Cd-, Pb-based QDs. The high Ag+ mobility in Ag2 S crystal, which causes plenty of cation deficiency and crystal defects, may be responsible mainly for the low photoluminescence quantum yield (PLQY) of Ag2 S QDs. Herein, a cation-doping strategy is presented via introducing a certain dosage of transition metal Pb2+ ions into Ag2 S nanocrystals to mitigate this intrinsic shortcoming. The Pb-doped Ag2 S QDs (designated as Pb:Ag2 S QDs) present a renovated crystal structure and significantly enhanced optical performance. Moreover, by simply adjusting the levels of Pb doping in the doped nanocrystals, Pb:Ag2 S QDs with bright emission (PLQY up to 30.2%) from 975 to 1242 nm can be prepared without altering the ultrasmall particle size (≈2.7-2.8 nm). Evidently, this cation-doping strategy facilitates both the renovation of crystal structure of Ag2 S QDs and modulation of their optical properties.

Keywords: particle size; ag2; ag2 qds; ag2 quantum; quantum dots

Journal Title: Small
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.