LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitrogen-Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor.

Photo by terri_bleeker from unsplash

Humidity sensors are essential components in wearable electronics for monitoring of environmental condition and physical state. In this work, a unique humidity sensing layer composed of nitrogen-doped reduced graphene oxide… Click to show full abstract

Humidity sensors are essential components in wearable electronics for monitoring of environmental condition and physical state. In this work, a unique humidity sensing layer composed of nitrogen-doped reduced graphene oxide (nRGO) fiber on colorless polyimide film is proposed. Ultralong graphene oxide (GO) fibers are synthesized by solution assembly of large GO sheets assisted by lyotropic liquid crystal behavior. Chemical modification by nitrogen-doping is carried out under thermal annealing in H2 (4%)/N2 (96%) ambient to obtain highly conductive nRGO fiber. Very small (≈2 nm) Pt nanoparticles are tightly anchored on the surface of the nRGO fiber as water dissociation catalysts by an optical sintering process. As a result, nRGO fiber can effectively detect wide humidity levels in the range of 6.1-66.4% relative humidity (RH). Furthermore, a 1.36-fold higher sensitivity (4.51%) at 66.4% RH is achieved using a Pt functionalized nRGO fiber (i.e., Pt-nRGO fiber) compared with the sensitivity (3.53% at 66.4% RH) of pure nRGO fiber. Real-time and portable humidity sensing characteristics are successfully demonstrated toward exhaled breath using Pt-nRGO fiber integrated on a portable sensing module. The Pt-nRGO fiber with high sensitivity and wide range of humidity detection levels offers a new sensing platform for wearable humidity sensors.

Keywords: humidity; nrgo fiber; nitrogen doped; water dissociation

Journal Title: Small
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.