LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Printing 1D Assembly Array of Single Particle Resolution for Magnetosensing.

Photo by timmarshall from unsplash

Magnetosensing is a ubiquitous ability for many organism species in nature. 1D assembly, especially that arranged in single-particle-resolution regulation, is able to sense the direction of magnetic field depending on… Click to show full abstract

Magnetosensing is a ubiquitous ability for many organism species in nature. 1D assembly, especially that arranged in single-particle-resolution regulation, is able to sense the direction of magnetic field depending on the enhanced dipolar interaction in the linear orientation. Inspired by the magnetosome structure in magnetotactic bacteria, a 1D assembly array of single particle resolution with controlled length and well-behaved configuration is prepared via inkjet printing method assisted with magnetic guiding. In the fabrication process, chains in a "tip-to-tip" regulation with the desired number of particles are prepared in a confined tiny inkjet-printed droplet. By adjusting the receding angle of the substrate, the assembled 1D morphology is kept/deteriorated depending on the pinning/depinning behavior during ink evaporation, which leads to the formation of well-behaved 1D assembly/aggregated dot assembly. Owing to the high-aspect-ratio characteristic of the assembled structure, the as-prepared 1D arrays can be used for magnetic field sensing with anisotropic magnetization M// /M⊥ up to 6.03.

Keywords: assembly array; single particle; particle resolution; array single

Journal Title: Small
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.