CO2 conversion into value-added chemical fuels driven by solar energy is an intriguing approach to address the current and future demand of energy supply. Currently, most reported surface-sensitized heterogeneous photocatalysts… Click to show full abstract
CO2 conversion into value-added chemical fuels driven by solar energy is an intriguing approach to address the current and future demand of energy supply. Currently, most reported surface-sensitized heterogeneous photocatalysts present poor activity and selectivity under visible light irradiation. Here, photosensitized porous metallic and magnetic 1200 CoC composites (PMMCoCC-1200) are coupled with a [Ru(bpy)3 ]Cl2 photosensitizer to efficiently reduce CO2 under visible-light irradiation in a selective and sustainable way. As a result, the CO production reaches a high yield of 1258.30 µL with selectivity of 64.21% in 6 h, superior to most reported heterogeneous photocatalysts. Systematic investigation demonstrates that the central metal cobalt is the active site for activating the adsorbed CO2 molecules and the surficial graphite carbon coating on cobalt metal is crucial for transferring the electrons from the triplet metal-to-ligand charge transfer of the photosensitizer Ru(bpy)32+ , which gives rise to significant enhancement for CO2 reduction efficiency. The fast electron injection from the excited Ru(bpy)32+ to PMMCoCC-1200 and the slow backward charge recombination result in a long-lived, charge-separated state for CO2 reduction. More impressively, the long-time stability and easy magnetic recycling ability of this metallic photocatalyst offer more benefits to the photocatalytic field.
               
Click one of the above tabs to view related content.