LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid Architectures of Heterogeneous Carbon Nanotube Composite Microstructures Enable Multiaxial Strain Perception with High Sensitivity and Ultrabroad Sensing Range.

Photo by curology from unsplash

Low-dimensional nanomaterials are widely adopted as active sensing elements for electronic skins. When the nanomaterials are integrated with microscale architectures, the performance of the electronic skin is significantly altered. Here,… Click to show full abstract

Low-dimensional nanomaterials are widely adopted as active sensing elements for electronic skins. When the nanomaterials are integrated with microscale architectures, the performance of the electronic skin is significantly altered. Here, it is shown that a high-performance flexible and stretchable electronic skin can be produced by incorporating a piezoresistive carbon nanotube composite into a hierarchical topography of micropillar-wrinkle hybrid architectures that mimic wrinkles and folds in human skin. Owing to the unique hierarchical topography of the hybrid architectures, the hybrid electronic skin exhibits versatile and superior sensing performance, which includes multiaxial force detection (normal, bending, and tensile stresses), remarkable sensitivity (20.9 kPa-1 , 17.7 mm-1 , and gauge factor of 707 each for normal, bending, and tensile stresses), ultrabroad sensing range (normal stress = 0-270 kPa, bending radius of curvature = 1-6.5 mm, and tensile strain = 0-50%), sensing tunability, fast response time (24 ms), and high durability (>10 000 cycles). Measurements of spatial distributions of diverse mechanical stimuli are also demonstrated with the multipixel electronic skin. The stress-strain behavior of the hybrid structure is investigated by finite element analysis to elucidate the underlying principle of the superior sensing performance of the electronic skin.

Keywords: topography; electronic skin; skin; hybrid architectures; carbon nanotube; strain

Journal Title: Small
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.