LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D Gold-Modified Cerium and Cobalt Oxide Catalyst on a Graphene Aerogel for Highly Efficient Catalytic Formaldehyde Oxidation.

Photo by unstable_affliction from unsplash

A hard template method is used to prepare porous gold-doped cerium and cobalt oxide (Au-Cex Coy ) materials. A series of 3D Au-Ce x Coy /graphene aerogel (GA) composites is… Click to show full abstract

A hard template method is used to prepare porous gold-doped cerium and cobalt oxide (Au-Cex Coy ) materials. A series of 3D Au-Ce x Coy /graphene aerogel (GA) composites is then fabricated by a facile heating method. The obtained catalysts possess a well-defined structure of ordered arrays of nanotubes and good performance in formaldehyde (HCHO) oxidation. The composition and surface elemental valence states of the catalysts are modulated by the Ce/Co molar ratio. The Au-Cex Coy catalyst and graphene oxide sheets are well compounded within 60 s through a diamine cross-linker to form 3D Au-Cex Coy /GA composites. In addition, the resulting catalyst of 3 wt% Au-Ce3 Co/GA achieves ≈55% conversion at room temperature and 100% conversion when the reaction temperature is raised at 60 °C. The synergistic effect between CeO2 and Co3 O4 promotes the migration of oxygen species and the activation of Au, which facilitates HCHO oxidation. The method used to prepare the 3D catalyst could be used to produce other catalytic materials with good replication of the template. In addition, these findings provide a simple method for rapid fabrication of catalyst/GA composites. The superior activity and stability of the 3D Au-Ce3 Co/GA catalyst make it potentially applicable in HCHO removal.

Keywords: graphene aerogel; cobalt oxide; oxidation; catalyst graphene; cerium cobalt; catalyst

Journal Title: Small
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.