LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light-Induced Shape Morphing of Liquid Metal Nanodroplets Enabled by Polydopamine Coating.

Photo from wikipedia

Shape morphing nanosystems have recently attracted much attention and a number of applications are developed, spanning from autonomous robotics to drug delivery. However, the fabrication of such nanosystems remains at… Click to show full abstract

Shape morphing nanosystems have recently attracted much attention and a number of applications are developed, spanning from autonomous robotics to drug delivery. However, the fabrication of such nanosystems remains at an early stage owing to limited choices of strategies and materials. This work reports a facile method to fabricate liquid metal (LM) nanodroplets by sonication of bulk LM in an aqueous dopamine hydrochloride solution and their application in light-induced shape morphing at the nanoscale. In this method, dopamine acts as a surfactant, which stabilizes the LM nanodroplets dispersion during the sonication, and results in downsizing of the nanodroplets. Furthermore, by adding 2-amino-2-(hydroxymethyl)-1,3-propanediol to the suspension, self-polymerization of dopamine molecules occurs, resulting in the formation of polydopamine (PDA)-coated LM nanodroplets. Owing to the high photothermal conversion of the PDA, PDA-coated LM nanodroplets are transformed from spherical shapes to ellipsoids by NIR laser irradiation. This study paves a simple and reliable pathway for the preparation of functional LM nanodroplets and their application as shape-morphing nanosystems.

Keywords: liquid metal; shape; light induced; shape morphing; metal nanodroplets; induced shape

Journal Title: Small
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.