LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MG53 Inhibits the Progression of Tongue Cancer Cells through Regulating PI3K-AKT Signaling Pathway: Evidence from 3D Cell Culture and Animal Model.

Photo by nci from unsplash

MG53 is transcriptionally activated by the IRS-1/PI3K/AKT signal pathway, which is closely related with oncogenesis of several tumors. Here, the role of MG53 in the tumorigenesis of tongue cancer is… Click to show full abstract

MG53 is transcriptionally activated by the IRS-1/PI3K/AKT signal pathway, which is closely related with oncogenesis of several tumors. Here, the role of MG53 in the tumorigenesis of tongue cancer is analyzed in vitro and in vivo. The stable MG53 overexpression/knockdown SCC9 and SCC25 cells are constructed through retrovirus infection. Then a PLGA cylinder is used to provide a 3D culture environment for cell growth. Cell counting results suggest that overexpression of MG53 inhibits the cell proliferation and colony formation of SCC9 and SCC25 cells. While knockdown of MG53 has the opposite effect. Furthermore, knockdown of MG53 significantly promotes the invasion of SCC9 and SCC25 cells. Western blotting data confirm that MG53 affects the expression of the AKT signaling pathway. In a xenograft assay, knockdown of MG53 promotes the growth of xenograft which is induced by SCC25 cells in nude mice. The findings demonstrate that MG53 affects the biological behavior of human tongue cancer SCC9 and SCC25 cells.

Keywords: mg53; tongue cancer; scc25 cells; pi3k akt

Journal Title: Small
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.