Sodium secondary batteries have gained much attention as alternative power sources to replace lithium secondary batteries. However, some technical issues must be solved to ensure their success. Here, a highly… Click to show full abstract
Sodium secondary batteries have gained much attention as alternative power sources to replace lithium secondary batteries. However, some technical issues must be solved to ensure their success. Here, a highly safe and cost-effective Na-based dual-ion battery system employing self-formulated CuCl cathode material starting from a mixture of Cu and NaCl in conjunction with a nonflammable NaAlCl4 ยท2SO2 inorganic liquid electrolyte is demonstrated. It is found that CuCl is spontaneously formed by redox coupling of Cu/Cu(I) and SO2 /SO2 - anion radical. In the proposed battery, Na+ and Cl- are employed as energy carriers for the anode and cathode, respectively, and it is further demonstrated that the Na-metal-free battery configuration is possible using a hard carbon anode. Owing to the use of cheap electrode materials and a highly conductive and safe electrolyte, the proposed batteries deserve to be regarded as a promising approach for next-generation Na rechargeable batteries.
               
Click one of the above tabs to view related content.