LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porous Copper Microspheres for Selective Production of Multicarbon Fuels via CO2 Electroreduction.

Photo by kdghantous from unsplash

The electroreduction of carbon dioxide (CO2 ) toward high-value fuels can reduce the carbon footprint and store intermittent renewable energy. The iodide-ion-assisted synthesis of porous copper (P-Cu) microspheres with a… Click to show full abstract

The electroreduction of carbon dioxide (CO2 ) toward high-value fuels can reduce the carbon footprint and store intermittent renewable energy. The iodide-ion-assisted synthesis of porous copper (P-Cu) microspheres with a moderate coordination number of 7.7, which is beneficial for the selective electroreduction of CO2 into multicarbon (C2+ ) chemicals is reported. P-Cu delivers a C2+ Faradaic efficiency of 78 ± 1% at a potential of -1.1 V versus a reversible hydrogen electrode, which is 32% higher than that of the compact Cu counterpart and approaches the record (79%) reported in the same cell configuration. In addition, P-Cu shows good stability without performance loss throughout a continuous operation of 10 h.

Keywords: porous copper; copper microspheres; co2; electroreduction; multicarbon

Journal Title: Small
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.