LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Artificial Engineered Natural Killer Cells Combined with Antiheat Endurance as a Powerful Strategy for Enhancing Photothermal-Immunotherapy Efficiency of Solid Tumors.

Photo by homajob from unsplash

Although photothermal therapy (PTT) is preclinically applied in solid tumor treatment, incomplete tumor removal of PTT and heat endurance of tumor cells induces significant tumor relapse after treatment, therefore lowering… Click to show full abstract

Although photothermal therapy (PTT) is preclinically applied in solid tumor treatment, incomplete tumor removal of PTT and heat endurance of tumor cells induces significant tumor relapse after treatment, therefore lowering the therapeutic efficiency of PTT. Herein, a programmable therapeutic strategy that integrates photothermal therapeutic agents (PTAs), DNAzymes, and artificial engineered natural killer (A-NK) cells for immunotherapy of hepatocellular carcinoma (HCC) is designed. The novel PTAs, termed as Mn-CONASHs, with 2D structure are synthesized by the coordination of tetrahydroxyanthraquinone and Mn2+ ions. By further adsorbing polyetherimide/DNAzymes on the surface, the DNAzymes@Mn-CONASHs exhibit excellent light-to-heat conversion ability, tumor microenvironment enhanced T1 -MRI guiding ability, and antiheat endurance ability. Furthermore, the artificial engineered NK cells with HCC specific targeting TLS11a-aptamer decoration are constructed for specifically eliminating any possible residual tumor cells after PTT, to systematically enhance the therapeutic efficacy of PTT and avoid tumor relapse. Taken together, the potential of A-NK cells combined with antiheat endurance as a powerful strategy for immuno-enhancing photothermal therapy efficiency of solid tumors is highlighted, and the current strategy might provide promising prospects for cancer therapy.

Keywords: antiheat endurance; artificial engineered; strategy; efficiency; endurance; tumor

Journal Title: Small
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.