LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microfluidics-Assisted Assembly of Injectable Photonic Hydrogels toward Reflective Cooling.

Photo by alphabetania from unsplash

Development of fast curing and easy modeling of colloidal photonic crystals is highly desirable for various applications. Here, a novel type of injectable photonic hydrogel (IPH) is proposed to achieve… Click to show full abstract

Development of fast curing and easy modeling of colloidal photonic crystals is highly desirable for various applications. Here, a novel type of injectable photonic hydrogel (IPH) is proposed to achieve self-healable structural color by integrating microfluidics-derived photonic supraballs with supramolecular hydrogels. The supramolecular hydrogel is engineered via incorporating β-cyclodextrin/poly(2-hydroxypropyl acrylate-co-N-vinylimidazole) (CD/poly(HPA-co-VI)) with methacrylated gelatin (GelMA), and serves as a scaffold for colloidal crystal arrays. The photonic supraballs derived from the microfluidics techniques, exhibit excellent compatibility with the hydrogel scaffolds, leading to enhanced assembly efficiency. By virtue of hydrogen bonds and host-guest interactions, a series of self-healable photonic hydrogels (linear, planar, and spiral assemblies) can be facilely assembled. It is demonstrated that the spherical symmetry of the photonic supraballs endows them with identical optical responses independent of viewing angles. In addition, by taking the advantage of angle independent spectrum characteristics, the IPH presents beneficial effects in reflective cooling, which can achieve up to 17.4 °C in passive solar reflective cooling. The strategy represents an easy-to-perform platform for the construction of IPH, providing novel insights into macroscopic self-assembly toward thermal management applications.

Keywords: photonic hydrogels; photonic supraballs; assisted assembly; reflective cooling; injectable photonic; microfluidics assisted

Journal Title: Small
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.