LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Real-Time Monitoring of Colloidal Crystallization in Electrostatically-Levitated Drops.

Photo from wikipedia

Colloidal crystallization is analogous to the crystallization in bulk atomic systems in various aspects, which has been explored as a model system. However, a real-time probing of the phenomenon still… Click to show full abstract

Colloidal crystallization is analogous to the crystallization in bulk atomic systems in various aspects, which has been explored as a model system. However, a real-time probing of the phenomenon still remains challenging. Here, a levitation system for a study of colloidal crystallization is demonstrated. Colloidal particles in a levitated droplet are gradually concentrated by isotropic evaporation of water from the surface of the droplet, resulting in crystallization. The structural change of the colloidal array during crystallization is investigated by simultaneously measuring the volume and reflectance spectra of the droplet. The crystal nucleates from the surface of the droplet at which the volume fraction exceeds the threshold and then the growth proceeds. The crystal growth behavior depends on the initial concentrations of colloidal particles and salts which determine the overall direction of crystal growth and interparticle spacing, respectively. The results show that a levitating bulk droplet has a great potential as a tool for in situ investigation of colloidal crystallization.

Keywords: colloidal crystallization; time monitoring; real time; droplet; crystallization

Journal Title: Small
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.