LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Target-Triggered Assembly of Nanogap Antennas to Enhance the Fluorescence of Single Molecules and Their Application in MicroRNA Detection.

Photo by darbonville from unsplash

Nanogap antennas are plasmonic nanostructures with a strong electromagnetic field generated at the gap region of two neighboring particles owing to the coupling of the collective surface plasmon resonance. They… Click to show full abstract

Nanogap antennas are plasmonic nanostructures with a strong electromagnetic field generated at the gap region of two neighboring particles owing to the coupling of the collective surface plasmon resonance. They have great potential for improving the optical properties of fluorophores. Herein, nanogap antennas are constructed using an aqueous solution-based method to overcome the defects of weak fluorescence and photobleaching associated with traditional organic dyes, and a highly sensitive nanogap antenna-based sensing strategy is presented for the detection of low-abundance nucleic acid biomarkers via a target-triggered strand displacement amplification (SDA) reaction between two DNA hairpins that are tagged to the tips of gold nanorods (Au NRs). In the presence of targets, end-to-end Au NR dimers gradually form, and the fluorophores quenched by the Au NRs exhibit a dramatic fluorescence enhancement due to the plasmon-enhanced fluorescence effect of nanogap antennas. Meanwhile, the SDA reaction results in secondary amplification of fluorescence signals. Combined with single-molecule counting, this method applied in miRNA-21 detection can achieve a low detection limit of 97.2 × 10-18 m. Moreover, accurate discrimination between different cells through miRNA-21 imaging demonstrates the potential of this method in monitoring the expression level of low-abundance nucleic acid biomarkers.

Keywords: detection; fluorescence; nanogap antennas; triggered assembly; target triggered

Journal Title: Small
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.