LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual pH/ROS-Responsive Nanoplatform with Deep Tumor Penetration and Self-Amplified Drug Release for Enhancing Tumor Chemotherapeutic Efficacy.

Photo from wikipedia

Poor deep tumor penetration and incomplete intracellular drug release remain challenges for antitumor nanomedicine application in clinical settings. Herein, a nanomedicine (RLPA-NPs) is developed that can achieve prolonged blood circulation,… Click to show full abstract

Poor deep tumor penetration and incomplete intracellular drug release remain challenges for antitumor nanomedicine application in clinical settings. Herein, a nanomedicine (RLPA-NPs) is developed that can achieve prolonged blood circulation, deep tumor penetration, active-targeting of cancer cells, endosome/lysosome escape, and intracellular selectivity self-amplified drug release for effective drug delivery. The RLPA-NPs are constructed by encapsulation of a pH-sensitive polymer octadecylamine-poly(aspartate-1-(3-aminopropyl) imidazole) (OA-P(Asp-API)) and a ROS-generation agent, β-Lapachone (Lap), in micelles assembled by the tumor-penetration peptide internalizing RGD (iRGD)-modified ROS-responsive paclitaxel (PTX)-prodrug. iRGD could promote RLPA-NPs penetration into deep tumor tissue, and specific targeting to cancer cells. After internalization by cancer cells through receptor-mediated endocytosis, OA-P(Asp-API) can rapidly protonate in the endosome's acidic environment, resulting in RLPA-NPs escape from the endosome through the "proton sponge effect". At the same time, the RLPA-NPs micelle disassembles, releasing Lap and PTX-prodrug. Subsequently, the released Lap could generate ROS, consequently amplifying and accelerating PTX release to kill tumor cells. The in vitro and in vivo studies demonstrated that RLPA-NPs can significantly improve the therapeutic effect compared to control groups. Therefore, RLPA-NPs are a promising nanoplatform for overcoming multiple physiological and pathological barriers to enhance drug delivery.

Keywords: tumor penetration; drug; deep tumor; rlpa nps; tumor

Journal Title: Small
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.