LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single Iron Site Nanozyme for Ultrasensitive Glucose Detection.

Photo from wikipedia

Nanomaterials with enzyme-mimicking characteristics have engaged great awareness in various fields owing to their comparative low cost, high stability, and large-scale preparation. However, the wide application of nanozymes is seriously… Click to show full abstract

Nanomaterials with enzyme-mimicking characteristics have engaged great awareness in various fields owing to their comparative low cost, high stability, and large-scale preparation. However, the wide application of nanozymes is seriously restricted by the relatively low catalytic activity and poor specificity, primarily because of the inhomogeneous catalytic sites and unclear catalytic mechanisms. Herein, a support-sacrificed strategy is demonstrated to prepare a single iron site nanozyme (Fe SSN) dispersed on the porous N-doped carbon. With well-defined coordination structure and high density of active sites, the Fe SSN performs prominent peroxidase-like activity by efficiently activating H2 O2 into hydroxyl radical (•OH) species. Furthermore, the Fe SSN is applied in colorimetric detection of glucose through a multienzyme biocatalytic cascade platform. Moreover, a low-cost integrated agarose-based hydrogel colorimetric biosensor is designed and successfully achieves the visualization evaluation and quantitative detection of glucose. This work expands the application of single-site catalysts in the fields of nanozyme-based biosensors and personal biomedical diagnosis.

Keywords: detection; iron site; single iron; site; site nanozyme

Journal Title: Small
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.