LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Miniature Hollow Gold Nanorods with Enhanced Effect for In Vivo Photoacoustic Imaging in the NIR-II Window.

Photo by teveir from unsplash

The miniaturization of gold nanorods exhibits a bright prospect for intravital photoacoustic imaging (PAI) and the hollow structure possesses a better plasmonic property. Herein, miniature hollow gold nanorods (M-AuHNRs) (≈46 nm… Click to show full abstract

The miniaturization of gold nanorods exhibits a bright prospect for intravital photoacoustic imaging (PAI) and the hollow structure possesses a better plasmonic property. Herein, miniature hollow gold nanorods (M-AuHNRs) (≈46 nm in length) possessing strong plasmonic absorbance in the second near-infrared (NIR-II) window (1000-1350 nm) are developed, which are considered as the most suitable range for the intravital PAI. The as-prepared M-AuHNRs exhibit 3.5 times stronger photoacoustic signal intensity than the large hollow Au nanorods (≈105 nm in length) at 0.2 optical density under 1064 nm laser irradiation. The in vivo biodistribution measurement shows that the accumulation in tumor of miniature nanorods is twofold as high as that of the large counterpart. After modifying with a tumor-targeting molecule and fluorochrome, in living tumor-bearing mice, the M-AuHNRs group gives a high fluorescence intensity in tumors, which is 3.6-fold that of the large ones with the same functionalization. Moreover, in the intravital PAI of living tumor-bearing mice, the M-AuHNRs generate longer-lasting and stronger photoacoustic signal than the large counterpart in the NIR-II window. Overall, this study presents the fabrication of M-AuHNRs as a promising contrast agent for intravital PAI.

Keywords: gold nanorods; nir window; miniature

Journal Title: Small
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.