LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cobalt Single Atoms Embedded in Nitrogen-Doped Graphene for Selective Oxidation of Benzyl Alcohol by Activated Peroxymonosulfate.

Photo from wikipedia

The development of novel single atom catalyst (SAC) is highly desirable in organic synthesis to achieve the maximized atomic efficiency. Here, a Co-based SAC on nitrogen-doped graphene (SACo@NG) with high… Click to show full abstract

The development of novel single atom catalyst (SAC) is highly desirable in organic synthesis to achieve the maximized atomic efficiency. Here, a Co-based SAC on nitrogen-doped graphene (SACo@NG) with high Co content of 4.1 wt% is reported. Various characterization results suggest that the monodispersed Co atoms are coordinated with N atoms to form robust and highly effective catalytic centers to activate peroxymonosulfate (PMS) for organic selective oxidation. The catalytic performance of the SACo@NG/PMS system is conducted on the selective oxidation of benzyl alcohol (BzOH) showing high efficiency with over 90% conversion and benzaldehyde selectivity within 180 min under mild conditions. Both radical and non-radical processes occurred in the selective oxidation of BzOH, but the non-radical oxidation plays the dominant role which is accomplished by the adsorption of BzOH/PMS on the surface of SACo@NG and the subsequent electron transfer through the carbon matrix. This work provides new insights to the preparation of efficient transition metal-based single atom catalysts and their potential applications in PMS mediated selective oxidation of alcohols.

Keywords: nitrogen doped; oxidation; doped graphene; selective oxidation; benzyl alcohol; oxidation benzyl

Journal Title: Small
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.