LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Robust and Low-Power Bismuth Doped Tin Oxide Memristor Derived from Coaxial Conductive Filaments.

Photo from wikipedia

Memristor, processing data storage and logic operation all-in-one, is an advanced configuration for next generation computer. In this work, a bismuth doped tin oxide (Bi:SnO2 ) memristor with ITO/Bi:SnO2 /TiN… Click to show full abstract

Memristor, processing data storage and logic operation all-in-one, is an advanced configuration for next generation computer. In this work, a bismuth doped tin oxide (Bi:SnO2 ) memristor with ITO/Bi:SnO2 /TiN structure has been fabricated. Observing from transmission electron microscope (TEM) for the Bi:SnO2 device, it is found that the bismuth atoms surround the surface of SnO2 crystals to form the coaxial Bi conductive filament. The self-compliance current, switching voltage and operating current of Bi:SnO2 memristor are remarkably smaller than that of ITO/SnO2 /TiN device. With the content of 4.8% Bi doping, the SET operating power of doped device is 16 µW for ITO/Bi:SnO2 /TiN memory cell of 0.4 × 0.4 µm2 , which is cut down by two orders of magnitude. Hence, the findings in this study suggest that Bi:SnO2 memristors hold significant potential for application in low power memory and broadening the understanding of existing resistive switching (RS) mechanism.

Keywords: sno2; tin; power; doped tin; bismuth doped; memristor

Journal Title: Small
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.