LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Throughput Optimization of Recombinant Protein Production in Microfluidic Gel Beads.

Photo from wikipedia

Efficient production hosts are a key requirement for bringing biopharmaceutical and biotechnological innovations to the market. In this work, a truly universal high-throughput platform for optimization of microbial protein production… Click to show full abstract

Efficient production hosts are a key requirement for bringing biopharmaceutical and biotechnological innovations to the market. In this work, a truly universal high-throughput platform for optimization of microbial protein production is described. Using droplet microfluidics, large genetic libraries of strains are encapsulated into biocompatible gel beads that are engineered to selectively retain any protein of interest. Bead-retained products are then fluorescently labeled and strains with superior production titers are isolated using flow cytometry. The broad applicability of the platform is demonstrated by successfully culturing several industrially relevant bacterial and yeast strains and detecting peptides or proteins of interest that are secreted or released from the cell via autolysis. Lastly, the platform is applied to optimize cutinase secretion in Komagatella phaffii (Pichia pastoris) and a strain with 5.7-fold improvement is isolated. The platform permits the analysis of >106 genotypes per day and is readily applicable to any protein that can be equipped with a His6 -tag. It is envisioned that the platform will be useful for large screening campaigns that aim to identify improved hosts for large-scale production of biotechnologically relevant proteins, thereby accelerating the costly and time-consuming process of strain engineering.

Keywords: protein; production; protein production; gel beads; high throughput

Journal Title: Small
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.