The reversible and switchable triggered reconfiguration of tetrahedra nanostructures from monomer tetrahedra structures into dimer or trimer structures is introduced. The triggered bridging of monomer tetrahedra by K+ -ion-stabilized G-quadruplexes… Click to show full abstract
The reversible and switchable triggered reconfiguration of tetrahedra nanostructures from monomer tetrahedra structures into dimer or trimer structures is introduced. The triggered bridging of monomer tetrahedra by K+ -ion-stabilized G-quadruplexes or T-A•T triplexes leads to dimer or trimer tetrahedra structures that are separated by crown ether or basic pH conditions, respectively. The signal-triggered dimerization/trimerization of DNA tetrahedra structures is used to develop multiplexed miRNA-sensing platforms, and the tetrahedra mixture is used for intracellular sensing and imaging of miRNAs.
               
Click one of the above tabs to view related content.