LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Hollow Cobalt-Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting.

Photo from wikipedia

Transition metal phosphides (TMPs), especially the dual-metal TMPs, are highly active non-precious metal oxygen evolution reaction (OER) electrocatalysts. Herein, an interesting atom migration phenomenon induced by Kirkendall effect is reported… Click to show full abstract

Transition metal phosphides (TMPs), especially the dual-metal TMPs, are highly active non-precious metal oxygen evolution reaction (OER) electrocatalysts. Herein, an interesting atom migration phenomenon induced by Kirkendall effect is reported for the preparation of cobalt-iron (Co-Fe) phosphides by the direct phosphorization of Co-Fe alloys. The compositions and distributions of the Co and Fe phosphides phases on the surfaces of the electrocatalysts can be readily controlled by Cox Fey alloys precursors and the phosphorization process with interesting atom migration phenomenon. The optimized Co7 Fe3 phosphides exhibit a low overpotential of 225 mV at 10 mA cm-2 in 1 m KOH alkaline media, with a small Tafel slope of 37.88 mV dec-1 and excellent durability. It only requires a voltage of 1.56 V to drive the current density of 10 mA cm-2 when used as both anode and cathode for overall water splitting. This work opens a new strategy to controllable preparation of dual-metal TMPs with designed phosphides active sites for enhanced OER and overall water splitting.

Keywords: atom migration; water; migration; cobalt iron; preparation; iron phosphides

Journal Title: Small
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.