LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fibrous Phase Red Phosphorene as a New Photocatalyst for Carbon Dioxide Reduction and Hydrogen Evolution.

Photo from wikipedia

2D photocatalysts are one of the hottest issues in energy and material science. In the field of photocatalysis, a 2D material with an appropriate bandgap of 1.3 to 2.0 eV is… Click to show full abstract

2D photocatalysts are one of the hottest issues in energy and material science. In the field of photocatalysis, a 2D material with an appropriate bandgap of 1.3 to 2.0 eV is desirable. Herein, a new kind of fibrous phase red phosphorene with a bandgap between 1.43 to 1.54 eV is obtained. This is much better than black phosphorus because the bandgap of black P depends of its layer number. The black P needs to be as thin as 1-2 layers for suitable band diagram, which is difficult to control. The fibrous red phosphorene is first used for photocatalytic CO2 reduction, and its activity is superior to the majority of mainstream photocatalysts and reaches a record-high value among phosphorus. Besides, its activity in hydrogen evolution is higher than most of the phosphorus photocatalysts. The intralayer charge transfer is much easier than interlayer transfer. The mobility of electron and hole along the phosphorene plane is about 20 times higher than that perpendicular to different layers. The activity sites is at region between the two P[21] chains. These regions are easy to be exposed for fibrous phase phosphorene, making it to exhibit high activity.

Keywords: hydrogen evolution; red phosphorene; phase red; phosphorene; fibrous phase

Journal Title: Small
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.