LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bacteria-Triggered Multifunctional Hydrogel for Localized Chemodynamic and Low-Temperature Photothermal Sterilization.

Photo from wikipedia

Pathogenic infections seriously threaten public health and have been considered as one of the most critical challenges in clinical therapy. Construction of a safe and efficient photothermal antibacterial platform is… Click to show full abstract

Pathogenic infections seriously threaten public health and have been considered as one of the most critical challenges in clinical therapy. Construction of a safe and efficient photothermal antibacterial platform is a promising strategy for treatment of bacterial infections. Considering that high temperature does harm to the normal tissues and cells, herein, a bacteria-triggered multifunctional hydrogel is constructed for low-temperature photothermal sterilization with high efficiency by integrating localized chemodynamic therapy (L-CDT). The hydrogel is constructed by incorporating copper sulfide nanoparticles (CuSNPs ) with photothermal profile into the network of hyaluronic acid (HA) and Fe3+ -EDTA complexes, named as CHFH (CuSNPs -HA-Fe3+ -EDTA hydrogel). Bacteria can be accumulated on the surface of CHFH, which secretes hyaluronidase to decompose the HA and release Fe3+ . The Fe3+ is reduced into Fe2+ in microenvironment of bacteria to trigger Fenton reaction. The generated hydroxyl radicals result in sterilization based on L-CDT within short range. By integrating with photothermal property of CuSNPs , low-temperature photothermal therapy (LT-PTT) for sterilization is realized, which improves the antibacterial efficiency while minimizes damage to normal tissues. The CHFH is further used to prepare Band aid which effectively promotes the Staphylococcus aureus-infected wound healing process in vivo, confirming the great potential for clinical application.

Keywords: low temperature; hydrogel; temperature; sterilization; bacteria triggered; temperature photothermal

Journal Title: Small
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.