LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ Irradiated XPS Investigation on S-Scheme TiO2 @ZnIn2 S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction.

Photo by elevatebeer from unsplash

Reasonable design of efficient hierarchical photocatalysts has gained significant attention. Herein, a step-scheme (S-scheme) core-shell TiO2 @ZnIn2 S4 heterojunction is designed for photocatalytic CO2 reduction. The optimized sample exhibits much… Click to show full abstract

Reasonable design of efficient hierarchical photocatalysts has gained significant attention. Herein, a step-scheme (S-scheme) core-shell TiO2 @ZnIn2 S4 heterojunction is designed for photocatalytic CO2 reduction. The optimized sample exhibits much higher CO2 photoreduction conversion rates (the sum yield of CO, CH3 OH, and CH4 ) than the blank control, i.e., ZnIn2 S4 and TiO2 . The improved photocatalytic performance can be attributed to the inhibited recombination of photogenerated charge carriers induced by S-scheme heterojunction. The improvement is also attributed to the large specific surface areas and abundant active sites. Meanwhile, S-scheme photogenerated charge transfer mechanism is testified by in situ irradiated X-ray photoelectron spectroscopy, work function calculation, and electron paramagnetic resonance measurements. This work provides an effective strategy for designing highly efficient heterojunction photocatalysts for conversion of solar fuels.

Keywords: tio2 znin2; co2 reduction; photocatalytic co2; scheme; situ irradiated

Journal Title: Small
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.