LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications.

Photo from wikipedia

2D materials are now at the forefront of state-of-the-art nanotechnologies due to their fascinating properties and unique structures. As expected, low-cost, high-volume, and high-quality 2D materials play an important role… Click to show full abstract

2D materials are now at the forefront of state-of-the-art nanotechnologies due to their fascinating properties and unique structures. As expected, low-cost, high-volume, and high-quality 2D materials play an important role in the applications of flexible devices. Although considerable progress has been achieved in the integration of a series of novel 2D materials beyond graphene into flexible devices, a lot remains to be known. At this stage of their development, the key issues concern how to make further improvements to high-performance and scalable-production. Herein, recent progress in the quest to improve the current state of the art for 2D materials beyond graphene is reviewed. Namely, the properties and synthesis techniques of 2D materials are first introduced. Then, both the advantages and challenges of these 2D materials for flexible devices are also highlighted. Finally, important directions for future advancements toward efficient, low-cost, and stable flexible devices are outlined.

Keywords: flexible materials; applications flexible; materials beyond; flexible devices; graphene synthesis; beyond graphene

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.