LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Advances in ZIF-Derived Atomic Metal-N-C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities.

Photo from wikipedia

Exploring highly active, stable electrocatalysts with earth-abundant metal centers for the oxygen reduction reaction (ORR) is essential for sustainable energy conversion. Due to the high cost and scarcity of platinum,… Click to show full abstract

Exploring highly active, stable electrocatalysts with earth-abundant metal centers for the oxygen reduction reaction (ORR) is essential for sustainable energy conversion. Due to the high cost and scarcity of platinum, it is a general trend to develop metal-N-C (M-N-C) electrocatalysts, especially those prepared from the zeolite imidazolate framework (ZIF) to replace/minimize usage of noble metals in ORR electrocatalysis for their amazingly high catalytic efficiency, great stability, and readily-tuned electronic structure. In this review, the most pivotal advances in mechanisms leading to declined catalytic performance, synthetic strategies, and design principles in engineering ZIF-derived M-N-C for efficient ORR catalysis, are presented. Notably, this review focuses on how to improve intrinsic ORR activity, such as M-Nx -Cy coordination structures, doping metal-free heteroatoms in M-N-C, dual/multi-metal sites, hydrogen passivation, and edge-hosted M-Nx . Meanwhile, how to increase active sites density, including formation of M-N complex, spatial confinement effects, and porous structure design, are discussed. Thereafter, challenges and future perspectives of M-N-C are also proposed. The authors believe this instructive review will provide experimental and theoretical guidance for designing future, highly active ORR electrocatalysts, and facilitate their applications in diverse ORR-related energy technologies.

Keywords: zif derived; oxygen reduction; reduction reaction; synthetic strategies; metal; metal electrocatalysts

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.