LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic β-cyclodextrin Nanoparticle: An Efficient Building Block Between Functionalized Poly(pyrrole) Electrodes and Enzymes.

Photo by izuddinhelmi from unsplash

Glyconanoparticles (GNPs) made by self-assembly of carbohydrate-based polystyrene-block-β-cyclodextrin copolymer are used as a building block for the design of nanostructured biomaterials of electrode. The firm immobilization of GNPs is carried… Click to show full abstract

Glyconanoparticles (GNPs) made by self-assembly of carbohydrate-based polystyrene-block-β-cyclodextrin copolymer are used as a building block for the design of nanostructured biomaterials of electrode. The firm immobilization of GNPs is carried out on electrochemically generated polymer, poly(pyrrole-adamantane), and copolymer, poly(pyrrole-adamantane)/poly(pyrrole-lactobionamide) via host-guest interactions between adamantane and β-cyclodextrin. The ability of GNPs for the specific anchoring of biological macromolecules is investigated using glucose oxidase enzyme modified by adamantane groups as a protein model (GOx-Ad). The immobilization of GOx-Ad is carried out by incubation of an aqueous enzyme solution on a coating of GNPs adsorbed on a platinum electrode. The presence of immobilized GOx-Ad is evaluated in aqueous glucose solution by potentiostating the underlying platinum electrode at 0.7 V/SCE for the electro-oxidation of H2 O2 generated by the enzyme. The analytical performance of the bioelectrodes for the detection of glucose is compared to control electrodes prepared without GNPs or without electropolymerized films. The better permeability of copolymer compared to polymer and the possibility to elaborate two alternating layers of GNPs and GOx-Ad are clearly observed. The best amperometric response is recorded with a multilayered bioelectrode displaying a wide linear range linear range of the calibration curve: 68 µmol L-1 to 0.1 mol L-1 .

Keywords: block; poly pyrrole; building block; organic cyclodextrin

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.