LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Conductive Networks of Silver Nanosheets.

Photo from wikipedia

Although printed networks of semiconducting nanosheets have found success in a range of applications, conductive nanosheet networks are limited by low conductivities (60 dB in the microwave region at thicknesses 107… Click to show full abstract

Although printed networks of semiconducting nanosheets have found success in a range of applications, conductive nanosheet networks are limited by low conductivities (<106 S m-1 ). Here, dispersions of silver nanosheets (AgNS) that can be printed into highly conductive networks are described. Using a commercial thermal inkjet printer, AgNS patterns with unannealed conductivities of up to (6.0 ± 1.1) × 106  S m-1 are printed. These networks can form electromagnetic interference shields with record shielding effectiveness of >60 dB in the microwave region at thicknesses <200 nm. High resolution patterns with line widths down to 10 µm are also printed using an aerosol-jet printer which, when annealed at 200 °C, display conductivity >107  S m-1 . Unlike conventional Ag-nanoparticle inks, the 2D geometry of AgNS yields smooth, short-free interfaces between electrode and active layer when used as the top electrode in vertical nanosheet heterostructures. This shows that all-printed vertical heterostructures of AgNS/WS2 /AgNS, where the top electrode is a mesh grid, function as photodetectors demonstrating that such structures can be used in optoelectronic applications that usually require transparent conductors.

Keywords: conductive networks; networks silver; silver nanosheets; highly conductive

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.