LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Limiting Synthesis of Ultrathin Ge(110) Single Crystal via Liquid Metal.

Photo from wikipedia

Germanium, the prime applied semiconductor, is widely used in solid-state electronics and photoelectronics. Unfortunately, since the 3D diamond-like structure with strong covalent bonds impedes the 2D anisotropic growth, only the… Click to show full abstract

Germanium, the prime applied semiconductor, is widely used in solid-state electronics and photoelectronics. Unfortunately, since the 3D diamond-like structure with strong covalent bonds impedes the 2D anisotropic growth, only the examples of ultrathin Ge along the (111) plane have been investigated, much less to the controllable synthesis along another crystal surface. Meanwhile, Ge(111) flakes are limited in semiconductor applications because of their gapless property. Here, ultrathin Ge(110) single crystal is synthesized with semiconductive property via gallium-associated self-limiting growth. The obtained ultrathin Ge(110) single crystal exhibits anisotropic honeycomb structure, uniformly incremental lattice, wide tunable direct-bandgap, blue-shifted photoluminescence emission, and unique phonon modes, which are consistent with the previous theoretical predictions. It also confirms excellent second harmonic generation and high hole mobility of 724 cm2 V-1 s-1 . The realization of ultrathin Ge(110) single crystal will provide an excellent candidate for application in electronics and optoelectronics.

Keywords: single crystal; self limiting; ultrathin 110; synthesis; 110 single

Journal Title: Small
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.