LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Oxide-Ion Conductivity in a Hexagonal Perovskite-Related Oxide Ba7 Ta3.7 Mo1.3 O20.15 with Cation Site Preference and Interstitial Oxide Ions.

Photo by roanlavery from unsplash

Solid oxide-ion conductors are crucial for enabling clean and efficient energy devices such as solid oxide fuel cells. Hexagonal perovskite-related oxides have been placed at the forefront of high-performance oxide-ion… Click to show full abstract

Solid oxide-ion conductors are crucial for enabling clean and efficient energy devices such as solid oxide fuel cells. Hexagonal perovskite-related oxides have been placed at the forefront of high-performance oxide-ion conductors, with Ba7 Nb4- x Mo1+ x O20+ x /2 (x = 0-0.1) being an archetypal example. Herein, high oxide-ion conductivity and stability under reducing conditions in Ba7 Ta3.7 Mo1.3 O20.15 are reported by investigating the solid solutions Ba7 Ta4- x Mo1+ x O20+ x /2 (x = 0.2-0.7). Neutron diffraction indicates a large number of interstitial oxide ions in Ba7 Ta3.7 Mo1.3 O20.15 , leading to a high level of oxide-ion conductivity (e.g., 1.08 × 10-3 S cm-1 at 377 °C). The conductivity of Ba7 Ta3.7 Mo1.3 O20.15 is higher than that of Ba7 Nb4 MoO20 and conventional yttria-stabilized zirconia. In contrast to Ba7 Nb4- x Mo1+ x O20+ x /2 (x = 0-0.1), the oxide-ion conduction in Ba7 Ta3.7 Mo1.3 O20.15 is dominant even in highly reducing atmospheres (e.g., oxygen partial pressure of 1.6 × 10-24 atm at 909 °C). From structural analyses of the synchrotron X-ray diffraction data for Ba7 Ta3.7 Mo1.3 O20.15 , contrasting X-ray scattering powers of Ta5+ and Mo6+ allow identification of the preferential occupation of Mo6+ adjacent to the intrinsically oxygen-deficient layers, as supported by DFT calculations. The high conductivity and chemical and electrical stability in Ba7 Ta3.7 Mo1.3 O20.15 provide a strategy for the development of solid electrolytes based on hexagonal perovskite-related oxides.

Keywords: mo1; ta3 mo1; oxide ion; mo1 o20; ba7 ta3

Journal Title: Small
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.