LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation of Biomass by Superhydrophilic Nitrogen/Oxygen Co-Doped Porous Carbon Nanosphere Supported Pd Nanoparticles.

Photo from wikipedia

Selective hydrogenation and hydrodeoxygenation (HDO) of biomass to value-added products play a crucial role in the development of renewable energy resources. However, achieving a temperature-controlled selectivity within one catalytic system… Click to show full abstract

Selective hydrogenation and hydrodeoxygenation (HDO) of biomass to value-added products play a crucial role in the development of renewable energy resources. However, achieving a temperature-controlled selectivity within one catalytic system while retaining excellent hydrogenation and HDO performance remains a great challenge. Here, nitrogen/oxygen (N/O) co-doped porous carbon nanosphere derived from resin polymer spheres is synthesized as the host matrix to in situ encapsulate highly dispersed Pd nanoparticles (NPs). Through N/O co-doping, the defects on the surface of carbon structure can serve as active sites to promote substrate adsorption. After a facile H2 O2 post-treatment process, the presence of abundant carboxyl groups on the porous carbon nanospheres can act as acidic sites to replace the use of acidic additives in the HDO process. Additionally, the increased surface oxygen-containing groups improve hydrophilicity to disperse catalysts in aqueous solutions. Owing to the unique highly dispersed Pd NPs and abundant surface defects, the Pd@APF-H2 O2 (2.3 nm) catalysts exhibit excellent catalytic activity and temperature-controlled selectivity for hydrogenation and HDO products of biomass-derived vanillin.

Keywords: temperature controlled; carbon; hydrogenation; porous carbon; controlled selectivity

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.