LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen Bond Shielding Effect for High-Performance Aqueous Zinc Ion Batteries.

Photo by nate_dumlao from unsplash

Manganese oxides are highly desirable for the cathode of rechargeable aqueous zinc ion batteries (AZIBs) owing to their low cost and high abundance. However, the terrible structure stability of manganese… Click to show full abstract

Manganese oxides are highly desirable for the cathode of rechargeable aqueous zinc ion batteries (AZIBs) owing to their low cost and high abundance. However, the terrible structure stability of manganese oxide limits its practical application. Here, it is demonstrated that the hydrogen-bond shielding effect can improve the electrochemical performance of manganese oxide. Briefly, (NH4 )0.125 MnO2 (NHMO) is prepared by introducing NH4 + into the tunnel structure of α-MnO2 . The robust hydrogen bonds between N-H and host O atoms can stabilize the lattice structure of α-MnO2 and suppress the dissolution of Mn element. More importantly, it can also accelerate ions mobility kinetics by weakening the electrostatic interaction of host O atoms. Thus, the fabricated Zn||NHMO battery possesses impressive cycling life (99.5% of capacity retention over 10 000 cycles) and rate capability (109 mA h g-1 of discharge capacity at 6000 mA g-1 ). Comprehensive analyses reveal the essences of interfacial charge and bulk ions transfer. This finding opens new opportunities for the development of high-performance AZIBs.

Keywords: ion batteries; zinc ion; hydrogen bond; bond shielding; aqueous zinc; performance

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.